- A+
- # _*_ coding: utf-8 _*_
- """类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算"""
- # -- 寻求帮助:
- dir(obj) # 简单的列出对象obj所包含的方法名称,返回一个字符串列表
- help(obj.func) # 查询obj.func的具体介绍和用法
- # -- 测试类型的三种方法,推荐第三种
- if type(L) == type([]):
- print("L is list")
- if type(L) == list:
- print("L is list")
- if isinstance(L, list):
- print("L is list")
- # -- Python数据类型:哈希类型、不可哈希类型
- # 哈希类型,即在原地不能改变的变量类型,不可变类型。可利用hash函数查看其hash值,也可以作为字典的key
- "数字类型:int, float, decimal.Decimal, fractions.Fraction, complex"
- "字符串类型:str, bytes"
- "元组:tuple"
- "冻结集合:frozenset"
- "布尔类型:True, False"
- "None"
- # 不可hash类型:原地可变类型:list、dict和set。它们不可以作为字典的key。
- # -- 数字常量
- 1234, -1234, 0, 999999999 # 整数
- 1.23, 1., 3.14e-10, 4E210, 4.0e+210 # 浮点数
- 0o177, 0x9ff, 0X9FF, 0b101010 # 八进制、十六进制、二进制数字
- 3 + 4j, 3.0 + 4.0j, 3J # 复数常量,也可以用complex(real, image)来创建
- hex(I), oct(I), bin(I) # 将十进制数转化为十六进制、八进制、二进制表示的“字符串”
- int(string, base) # 将字符串转化为整数,base为进制数
- # 2.x中,有两种整数类型:一般整数(32位)和长整数(无穷精度)。可以用l或L结尾,迫使一般整数成为长整数
- float('inf'), float('-inf'), float('nan') # 无穷大, 无穷小, 非数
- # -- 数字的表达式操作符
- yield x # 生成器函数发送协议
- lambda args: expression # 生成匿名函数
- x if y else z # 三元选择表达式
- x and y, x or y, not x # 逻辑与、逻辑或、逻辑非
- x in y, x not in y # 成员对象测试
- x is y, x is not y # 对象实体测试
- x < y, x <= y, x > y, x >= y, x == y, x != y # 大小比较,集合子集或超集值相等性操作符
- 1 < a < 3 # Python中允许连续比较
- x | y, x & y, x ^ y # 位或、位与、位异或
- x << y, x >> y # 位操作:x左移、右移y位
- +, -, *, /, //, %, ** # 真除法、floor除法:返回不大于真除法结果的整数值、取余、幂运算
- -x, +x, ~x # 一元减法、识别、按位求补(取反)
- x[i], x[i:j:k] # 索引、分片、调用
- int(3.14), float(3) # 强制类型转换
- # -- 整数可以利用bit_length函数测试所占的位数
- a = 1;
- a.bit_length() # 1
- a = 1024;
- a.bit_length() # 11
- # -- repr和str显示格式的区别
- """
- repr格式:默认的交互模式回显,产生的结果看起来它们就像是代码。
- str格式:打印语句,转化成一种对用户更加友好的格式。
- """
- # -- 数字相关的模块
- # math模块
- # Decimal模块:小数模块
- import decimal
- from decimal import Decimal
- Decimal("0.01") + Decimal("0.02") # 返回Decimal("0.03")
- decimal.getcontext().prec = 4 # 设置全局精度为4 即小数点后边4位
- # Fraction模块:分数模块
- from fractions import Fraction
- x = Fraction(4, 6) # 分数类型 4/6
- x = Fraction("0.25") # 分数类型 1/4 接收字符串类型的参数
- # -- 集合set
- """
- set是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素。
- set支持union(联合), intersection(交), difference(差)和symmetric difference(对称差集)等数学运算。
- set支持x in set, len(set), for x in set。
- set不记录元素位置或者插入点, 因此不支持indexing, slicing, 或其它类序列的操作
- """
- s = set([3, 5, 9, 10]) # 创建一个数值集合,返回{3, 5, 9, 10}
- t = set("Hello") # 创建一个唯一字符的集合返回{}
- a = t | s;
- t.union(s) # t 和 s的并集
- b = t & s;
- t.intersection(s) # t 和 s的交集
- c = t – s;
- t.difference(s) # 求差集(项在t中, 但不在s中)
- d = t ^ s;
- t.symmetric_difference(s) # 对称差集(项在t或s中, 但不会同时出现在二者中)
- t.add('x');
- t.remove('H') # 增加/删除一个item
- s.update([10, 37, 42]) # 利用[......]更新s集合
- x in s, x not in s # 集合中是否存在某个值
- s.issubset(t);
- s <= t # 测试是否 s 中的每一个元素都在 t 中
- s.issuperset(t);
- s >= t # 测试是否 t 中的每一个元素都在 s 中
- s.copycopy();
- s.discard(x); # 删除s中x
- s.clear() # 清空s
- {x ** 2 for x in [1, 2, 3, 4]} # 集合解析,结果:{16, 1, 4, 9}
- {x for x in 'spam'} # 集合解析,结果:{'a', 'p', 's', 'm'}
- # -- 集合frozenset,不可变对象
- """
- set是可变对象,即不存在hash值,不能作为字典的键值。同样的还有list等(tuple是可以作为字典key的)
- frozenset是不可变对象,即存在hash值,可作为字典的键值
- frozenset对象没有add、remove等方法,但有union/intersection/difference等方法
- """
- a = set([1, 2, 3])
- b = set()
- b.add(a) # error: set是不可哈希类型
- b.add(frozenset(a)) # ok,将set变为frozenset,可哈希
- # -- 布尔类型bool
- type(True) # 返回<class 'bool'>
- isinstance(False, int) # bool类型属于整型,所以返回True
- True == 1;
- True is 1 # 输出(True, False)
- # -- 动态类型简介
- """
- 变量名通过引用,指向对象。
- Python中的“类型”属于对象,而不是变量,每个对象都包含有头部信息,比如"类型标示符" "引用计数器"等
- """
- # 共享引用及在原处修改:对于可变对象,要注意尽量不要共享引用!
- # 共享引用和相等测试:
- L = [1], M = [1], L is M # 返回False
- L = M = [1, 2, 3], L is M # 返回True,共享引用
- # 增强赋值和共享引用:普通+号会生成新的对象,而增强赋值+=会在原处修改
- L = M = [1, 2]
- L = L + [3, 4] # L = [1, 2, 3, 4], M = [1, 2]
- L += [3, 4] # L = [1, 2, 3, 4], M = [1, 2, 3, 4]
- # -- 常见字符串常量和表达式
- S = '' # 空字符串
- S = "spam’s" # 双引号和单引号相同
- S = "s\np\ta\x00m" # 转义字符
- S = """spam""" # 三重引号字符串,一般用于函数说明
- S = r'\temp' # Raw字符串,不会进行转义,抑制转义
- S = b'Spam' # Python3中的字节字符串
- S = u'spam' # Python2.6中的Unicode字符串
- s1 + s2, s1 * 3, s[i], s[i:j], len(s) # 字符串操作
- 'a %s parrot' % 'kind' # 字符串格式化表达式
- 'a {1} {0} parrot'.format('kind', 'red') # 字符串格式化方法
- for x in s: print(x) # 字符串迭代,成员关系
- [x * 2 for x in s] # 字符串列表解析
- ','.join(['a', 'b', 'c']) # 字符串输出,结果:a,b,c
- # -- 内置str处理函数:
- str1 = "stringobject"
- str1.upper();
- str1.lower();
- str1.swapcase();
- str1.capitalize();
- str1.title() # 全部大写,全部小写、大小写转换,首字母大写,每个单词的首字母都大写
- str1.ljust(width) # 获取固定长度,左对齐,右边不够用空格补齐
- str1.rjust(width) # 获取固定长度,右对齐,左边不够用空格补齐
- str1.center(width) # 获取固定长度,中间对齐,两边不够用空格补齐
- str1.zfill(width) # 获取固定长度,右对齐,左边不足用0补齐
- str1.find('t', start, end) # 查找字符串,可以指定起始及结束位置搜索
- str1.rfind('t') # 从右边开始查找字符串
- str1.count('t') # 查找字符串出现的次数
- # 上面所有方法都可用index代替,不同的是使用index查找不到会抛异常,而find返回-1
- str1.replace('old', 'new') # 替换函数,替换old为new,参数中可以指定maxReplaceTimes,即替换指定次数的old为new
- str1.strip(); # 默认删除空白符
- str1.strip('d'); # 删除str1字符串中开头、结尾处,位于 d 删除序列的字符
- str1.lstrip();
- str1.lstrip('d'); # 删除str1字符串中开头处,位于 d 删除序列的字符
- str1.rstrip();
- str1.rstrip('d') # 删除str1字符串中结尾处,位于 d 删除序列的字符
- str1.startswith('start') # 是否以start开头
- str1.endswith('end') # 是否以end结尾
- str1.isalnum();
- str1.isalpha();
- str1.isdigit();
- str1.islower();
- str1.isupper() # 判断字符串是否全为字符、数字、小写、大写
- # -- 三重引号编写多行字符串块,并且在代码折行处嵌入换行字符\n
- mantra = """hello world
- hello python
- hello my friend"""
- # mantra为"""hello world \n hello python \n hello my friend"""
- # -- 索引和分片:
- S[0], S[len(S)–1], S[-1] # 索引
- S[1:3], S[1:], S[:-1], S[1:10:2] # 分片,第三个参数指定步长,如`S[1:10:2]`是从1位到10位没隔2位获取一个字符。
- # -- 字符串转换工具:
- int('42'), str(42) # 返回(42, '42')
- float('4.13'), str(4.13) # 返回(4.13, '4.13')
- ord('s'), chr(115) # 返回(115, 's')
- int('1001', 2) # 将字符串作为二进制数字,转化为数字,返回9
- bin(13), oct(13), hex(13) # 将整数转化为二进制/八进制/十六进制字符串,返回('0b1101', '015', '0xd')
- # -- 另类字符串连接
- name = "wang" "hong" # 单行,name = "wanghong"
- name = "wang" \
- "hong" # 多行,name = "wanghong"
- # -- Python中的字符串格式化实现1--字符串格式化表达式
- """
- 基于C语言的'print'模型,并且在大多数的现有的语言中使用。
- 通用结构:%[(name)][flag][width].[precision]typecode
- """
- "this is %d %s bird" % (1, 'dead') # 一般的格式化表达式
- "%s---%s---%s" % (42, 3.14, [1, 2, 3]) # 字符串输出:'42---3.14---[1, 2, 3]'
- "%d...%6d...%-6d...%06d" % (1234, 1234, 1234, 1234) # 对齐方式及填充:"1234... 1234...1234 ...001234"
- x = 1.23456789
- "%e | %f | %g" % (x, x, x) # 对齐方式:"1.234568e+00 | 1.234568 | 1.23457"
- "%6.2f*%-6.2f*%06.2f*%+6.2f" % (x, x, x, x) # 对齐方式:' 1.23*1.23 *001.23* +1.23'
- "%(name1)d---%(name2)s" % {"name1": 23, "name2": "value2"} # 基于字典的格式化表达式
- "%(name)s is %(age)d" % vars() # vars()函数调用返回一个字典,包含了所有本函数调用时存在的变量
- # -- Python中的字符串格式化实现2--字符串格式化调用方法
- # 普通调用
- "{0}, {1} and {2}".format('spam', 'ham', 'eggs') # 基于位置的调用
- "{motto} and {pork}".format(motto='spam', pork='ham') # 基于Key的调用
- "{motto} and {0}".format('ham', motto='spam') # 混合调用
- # 添加键 属性 偏移量 (import sys)
- "my {1[spam]} runs {0.platform}".format(sys, {'spam': 'laptop'}) # 基于位置的键和属性
- "{config[spam]} {sys.platform}".format(sys=sys, config={'spam': 'laptop'}) # 基于Key的键和属性
- "first = {0[0]}, second = {0[1]}".format(['A', 'B', 'C']) # 基于位置的偏移量
- # 具体格式化
- "{0:e}, {1:.3e}, {2:g}".format(3.14159, 3.14159, 3.14159) # 输出'3.141590e+00, 3.142e+00, 3.14159'
- "{fieldname:format_spec}".format(......)
- # 说明:
- """
- fieldname是指定参数的一个数字或关键字, 后边可跟可选的".name"或"[index]"成分引用
- format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]
- fill ::= <any character> #填充字符
- align ::= "<" | ">" | "=" | "^" #对齐方式
- sign ::= "+" | "-" | " " #符号说明
- width ::= integer #字符串宽度
- precision ::= integer #浮点数精度
- type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"
- """
- # 例子:
- '={0:10} = {1:10}'.format('spam', 123.456) # 输出'=spam = 123.456'
- '={0:>10}='.format('test') # 输出'= test='
- '={0:<10}='.format('test') # 输出'=test ='
- '={0:^10}='.format('test') # 输出'= test ='
- '{0:X}, {1:o}, {2:b}'.format(255, 255, 255) # 输出'FF, 377, 11111111'
- 'My name is {0:{1}}.'.format('Fred', 8) # 输出'My name is Fred .' 动态指定参数
- # -- 常用列表常量和操作
- L = [[1, 2], 'string', {}] # 嵌套列表
- L = list('spam') # 列表初始化
- L = list(range(0, 4)) # 列表初始化
- list(map(ord, 'spam')) # 列表解析
- len(L) # 求列表长度
- L.count(value) # 求列表中某个值的个数
- L.append(obj) # 向列表的尾部添加数据,比如append(2),添加元素2
- L.insert(index, obj) # 向列表的指定index位置添加数据,index及其之后的数据后移
- L.extend(interable) # 通过添加iterable中的元素来扩展列表,比如extend([2]),添加元素2,注意和append的区别
- L.index(value, [start, [stop]]) # 返回列表中值value的第一个索引
- L.pop([index]) # 删除并返回index处的元素,默认为删除并返回最后一个元素
- L.remove(value) # 删除列表中的value值,只删除第一次出现的value的值
- L.reverse() # 反转列表
- L.sort(cmp=None, key=None, reverse=False) # 排序列表
- a = [1, 2, 3], b = a[10:] # 注意,这里不会引发IndexError异常,只会返回一个空的列表[]
- a = [], a += [1] # 这里实在原有列表的基础上进行操作,即列表的id没有改变
- a = [], a = a + [1] # 这里最后的a要构建一个新的列表,即a的id发生了变化
- # -- 用切片来删除序列的某一段
- a = [1, 2, 3, 4, 5, 6, 7]
- a[1:4] = [] # a = [1, 5, 6, 7]
- a = [0, 1, 2, 3, 4, 5, 6, 7]
- del a[::2] # 去除偶数项(偶数索引的),a = [1, 3, 5, 7]
- # -- 常用字典常量和操作
- D = {}
- D = {'spam': 2, 'tol': {'ham': 1}} # 嵌套字典
- D = dict.fromkeys(['s', 'd'], 8) # {'s': 8, 'd': 8}
- D = dict(name='tom', age=12) # {'age': 12, 'name': 'tom'}
- D = dict([('name', 'tom'), ('age', 12)]) # {'age': 12, 'name': 'tom'}
- D = dict(zip(['name', 'age'], ['tom', 12])) # {'age': 12, 'name': 'tom'}
- D.keys();
- D.values();
- D.items() # 字典键、值以及键值对
- D.get(key, default) # get函数
- D.update(D_other) # 合并字典,如果存在相同的键值,D_other的数据会覆盖掉D的数据
- D.pop(key, [D]) # 删除字典中键值为key的项,返回键值为key的值,如果不存在,返回默认值D,否则异常
- D.popitem() # pop字典中随机的一项(一个键值对)
- D.setdefault(k[, d]) # 设置D中某一项的默认值。如果k存在,则返回D[k],否则设置D[k]=d,同时返回D[k]。
- del D # 删除字典
- del D['key'] # 删除字典的某一项
- if key in D: if
- key not in D: # 测试字典键是否存在
- # 字典注意事项:(1)对新索引赋值会添加一项(2)字典键不一定非得是字符串,也可以为任何的不可变对象
- # 不可变对象:调用对象自身的任意方法,也不会改变该对象自身的内容,这些方法会创建新的对象并返回。
- # 字符串、整数、tuple都是不可变对象,dict、set、list都是可变对象
- D[(1, 2, 3)] = 2 # tuple作为字典的key
- # -- 字典解析
- D = {k: 8 for k in ['s', 'd']} # {'s': 8, 'd': 8}
- D = {k: v for (k, v) in zip(['name', 'age'], ['tom', 12])} # {'age': 12, 'name': tom}
- # -- 字典的特殊方法__missing__:当查找找不到key时,会执行该方法
- class Dict(dict):
- def __missing__(self, key):
- self[key] = []
- return self[key]
- dct = dict()
- dct["foo"].append(1) # 这有点类似于collections.defalutdict
- dct["foo"] # [1]
- # -- 元组和列表的唯一区别在于元组是不可变对象,列表是可变对象
- a = [1, 2, 3] # a[1] = 0, OK
- a = (1, 2, 3) # a[1] = 0, Error
- a = ([1, 2]) # a[0][1] = 0, OK
- a = [(1, 2)] # a[0][1] = 0, Error
- # -- 元组的特殊语法: 逗号和圆括号
- D = (12) # 此时D为一个整数 即D = 12
- D = (12,) # 此时D为一个元组 即D = (12, )
- # -- 文件基本操作
- output = open(r'C:\spam', 'w') # 打开输出文件,用于写
- input = open('data', 'r') # 打开输入文件,用于读。打开的方式可以为'w', 'r', 'a', 'wb', 'rb', 'ab'等
- fp.read([size]) # size为读取的长度,以byte为单位
- fp.readlinereadline([size]) # 读一行,如果定义了size,有可能返回的只是一行的一部分
- fp.readlines([size]) # 把文件每一行作为一个list的一个成员,并返回这个list。其实它的内部是通过循环调用readline()来实现的。如果提供size参数,size是表示读取内容的总长。
- fp.readable() # 是否可读
- fp.write(str) # 把str写到文件中,write()并不会在str后加上一个换行符
- fp.writelines(seq) # 把seq的内容全部写到文件中(多行一次性写入)
- fp.writeable() # 是否可写
- fp.close() # 关闭文件。
- fp.flush() # 把缓冲区的内容写入硬盘
- fp.fileno() # 返回一个长整型的”文件标签“
- fp.isatty() # 文件是否是一个终端设备文件(unix系统中的)
- fp.tell() # 返回文件操作标记的当前位置,以文件的开头为原点
- fp.next() # 返回下一行,并将文件操作标记位移到下一行。把一个file用于for … in file这样的语句时,就是调用next()函数来实现遍历的。
- fp.seek(offset[, whence]) # 将文件打开操作标记移到offset的位置。whence为0表示从头开始计算,1表示以当前位置为原点计算。2表示以文件末尾为原点进行计算。
- fp.seekable() # 是否可以seek
- fp.truncate([size]) # 把文件裁成规定的大小,默认的是裁到当前文件操作标记的位置。
- for line in open('data'):
- print(line) # 使用for语句,比较适用于打开比较大的文件
- open('f.txt', encoding='latin-1') # Python3.x Unicode文本文件
- open('f.bin', 'rb') # Python3.x 二进制bytes文件
- # 文件对象还有相应的属性:buffer closed encoding errors line_buffering name newlines等
- # -- 其他
- # Python中的真假值含义:1. 数字如果非零,则为真,0为假。 2. 其他对象如果非空,则为真
- # 通常意义下的类型分类:1. 数字、序列、映射。 2. 可变类型和不可变类型
- """语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句"""
- # -- 赋值语句的形式
- spam = 'spam' # 基本形式
- spam, ham = 'spam', 'ham' # 元组赋值形式
- [spam, ham] = ['s', 'h'] # 列表赋值形式
- a, b, c, d = 'abcd' # 序列赋值形式
- a, *b, c = 'spam' # 序列解包形式(Python3.x中才有)
- spam = ham = 'no' # 多目标赋值运算,涉及到共享引用
- spam += 42 # 增强赋值,涉及到共享引用
- # -- 序列赋值 序列解包
- [a, b, c] = (1, 2, 3) # a = 1, b = 2, c = 3
- a, b, c, d = "spam" # a = 's', b = 'p', c = 'a', d = 'm'
- a, b, c = range(3) # a = 0, b = 1, c = 2
- a, *b = [1, 2, 3, 4] # a = 1, b = [2, 3, 4]
- *a, b = [1, 2, 3, 4] # a = [1, 2, 3], b = 4
- a, *b, c = [1, 2, 3, 4] # a = 1, b = [2, 3], c = 4
- # 带有*时 会优先匹配*之外的变量 如
- a, *b, c = [1, 2] # a = 1, c = 2, b = []
- # -- print函数原型
- print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
- # 流的重定向
- print('hello world') # 等于sys.stdout.write('hello world')
- temp = sys.stdout # 原有流的保存
- sys.stdout = open('log.log', 'a') # 流的重定向
- print('hello world') # 写入到文件log.log
- sys.stdout.close()
- sys.stdout = temp # 原有流的复原
- # -- Python中and或or总是返回对象(左边的对象或右边的对象) 且具有短路求值的特性
- 1 or 2 or 3 # 返回 1
- 1 and 2 and 3 # 返回 3
- # -- if/else三元表达符(if语句在行内)
- A = 1 if X else 2
- A = 1 if X else (2 if Y else 3)
- # 也可以使用and-or语句(一条语句实现多个if-else)
- a = 6
- result = (a > 20 and "big than 20" or a > 10 and "big than 10" or a > 5 and "big than 5") # 返回"big than 20"
- # -- Python的while语句或者for语句可以带else语句 当然也可以带continue/break/pass语句
- while a > 1:
- anything
- else:
- anything
- # else语句会在循环结束后执行,除非在循环中执行了break,同样的还有for语句
- for i in range(5):
- anything
- else:
- anything
- # -- for循环的元组赋值
- for (a, b) in [(1, 2), (3, 4)]: # 最简单的赋值
- for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]: # 自动解包赋值
- for ((a, b), c) in [((1, 2), 3), ("XY", 6)]: # 自动解包 a = X, b = Y, c = 6
- for (a, *b) in [(1, 2, 3), (4, 5, 6)]: # 自动解包赋值
- # -- 列表解析语法
- M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
- res = [sum(row) for row in M] # G = [6, 15, 24] 一般的列表解析 生成一个列表
- res = [c * 2 for c in 'spam'] # ['ss', 'pp', 'aa', 'mm']
- res = [a * b for a in [1, 2] for b in [4, 5]] # 多解析过程 返回[4, 5, 8, 10]
- res = [a for a in [1, 2, 3] if a < 2] # 带判断条件的解析过程
- res = [a if a > 0 else 0 for a in [-1, 0, 1]] # 带判断条件的高级解析过程
- # 两个列表同时解析:使用zip函数
- for teama, teamb in zip(["Packers", "49ers"], ["Ravens", "Patriots"]):
- print(teama + " vs. " + teamb)
- # 带索引的列表解析:使用enumerate函数
- for index, team in enumerate(["Packers", "49ers", "Ravens", "Patriots"]):
- print(index, team) # 输出0, Packers \n 1, 49ers \n ......
- # -- 生成器表达式
- G = (sum(row) for row in M) # 使用小括号可以创建所需结果的生成器generator object
- next(G), next(G), next(G) # 输出(6, 15, 24)
- G = {sum(row) for row in M} # G = {6, 15, 24} 解析语法还可以生成集合和字典
- G = {i: sum(M[i]) for i in range(3)} # G = {0: 6, 1: 15, 2: 24}
- # -- 文档字符串:出现在Module的开端以及其中函数或类的开端 使用三重引号字符串
- """
- module document
- """
- def func():
- """
- function document
- """
- print()
- class Employee(object):
- """
- class document
- """
- print()
- print(func.__doc__) # 输出函数文档字符串
- print(Employee.__doc__) # 输出类的文档字符串
- # -- 命名惯例:
- """
- 以单一下划线开头的变量名(_X)不会被from module import*等语句导入
- 前后有两个下划线的变量名(__X__)是系统定义的变量名,对解释器有特殊意义
- 以两个下划线开头但不以下划线结尾的变量名(__X)是类的本地(私有)变量
- """
- # -- 列表解析 in成员关系测试 map sorted zip enumerate内置函数等都使用了迭代协议
- 'first line' in open('test.txt') # in测试 返回True或False
- list(map(str.upper, open('t'))) # map内置函数
- sorted(iter([2, 5, 8, 3, 1])) # sorted内置函数
- list(zip([1, 2], [3, 4])) # zip内置函数 [(1, 3), (2, 4)]
- # -- del语句: 手动删除某个变量
- del X
- # -- 获取列表的子表的方法:
- x = [1, 2, 3, 4, 5, 6]
- x[:3] # 前3个[1,2,3]
- x[1:5] # 中间4个[2,3,4,5]
- x[-3:] # 最后3个[4,5,6]
- x[::2] # 奇数项[1,3,5]
- x[1::2] # 偶数项[2,4,6]
- # -- 手动迭代:iter和next
- L = [1, 2]
- I = iter(L) # I为L的迭代器
- I.next() # 返回1
- I.next() # 返回2
- I.next() # Error:StopIteration
- # -- Python中的可迭代对象
- """
- 1.range迭代器
- 2.map、zip和filter迭代器
- 3.字典视图迭代器:D.keys()), D.items()等
- 4.文件类型
- """
- """函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则"""
- # -- 函数相关的语句和表达式
- myfunc('spam') # 函数调用
- def myfunc(): # 函数定义
- return None # 函数返回值
- global a # 全局变量
- nonlocal x # 在函数或其他作用域中使用外层(非全局)变量
- yield x # 生成器函数返回
- lambda # 匿名函数
- # -- Python函数变量名解析:LEGB原则,即:
- """
- local(functin) --> encloseing function locals --> global(module) --> build-in(python)
- 说明:以下边的函数maker为例 则相对于action而言 X为Local N为Encloseing
- """
- # -- 嵌套函数举例:工厂函数
- def maker(N):
- def action(X):
- return X ** N
- return action
- f = maker(2) # pass 2 to N
- f(3) # 9, pass 3 to X
- # -- 嵌套函数举例:lambda实例
- def maker(N):
- action = (lambda X: X ** N)
- return action
- f = maker(2) # pass 2 to N
- f(3) # 9, pass 3 to X
- # -- nonlocal和global语句的区别
- # nonlocal应用于一个嵌套的函数的作用域中的一个名称 例如:
- start = 100
- def tester(start):
- def nested(label):
- nonlocal start # 指定start为tester函数内的local变量 而不是global变量start
- print(label, start)
- start += 3
- return nested
- # global为全局的变量 即def之外的变量
- def tester(start):
- def nested(label):
- global start # 指定start为global变量start
- print(label, start)
- start += 3
- return nested
- # -- 函数参数,不可变参数通过“值”传递,可变参数通过“引用”传递
- def f(a, b, c): print(a, b, c)
- f(1, 2, 3) # 参数位置匹配
- f(1, c=3, b=2) # 参数关键字匹配
- def f(a, b=1, c=2): print(a, b, c)
- f(1) # 默认参数匹配
- f(1, 2) # 默认参数匹配
- f(a=1, c=3) # 关键字参数和默认参数的混合
- # Keyword-Only参数:出现在*args之后 必须用关键字进行匹配
- def keyOnly(a, *b, c): print('') # c就为keyword-only匹配 必须使用关键字c = value匹配
- def keyOnly(a, *, b, c): ...... # b c为keyword-only匹配 必须使用关键字匹配
- def keyOnly(a, *, b=1): ...... # b有默认值 或者省略 或者使用关键字参数b = value
- # -- 可变参数匹配: * 和 **
- def f(*args): print(args) # 在元组中收集不匹配的位置参数
- f(1, 2, 3) # 输出(1, 2, 3)
- def f(**args): print(args) # 在字典中收集不匹配的关键字参数
- f(a=1, b=2) # 输出{'a':1, 'b':2}
- def f(a, *b, **c): print(a, b, c) # 两者混合使用
- f(1, 2, 3, x=4, y=5) # 输出1, (2, 3), {'x':4, 'y':5}
- # -- 函数调用时的参数解包: * 和 ** 分别解包元组和字典
- func(1, *(2, 3)) <= = > func(1, 2, 3)
- func(1, **{'c': 3, 'b': 2}) <= = > func(1, b=2, c=3)
- func(1, *(2, 3), **{'c': 3, 'b': 2}) <= = > func(1, 2, 3, b=2, c=3)
- # -- 函数属性:(自己定义的)函数可以添加属性
- def func(): .....
- func.count = 1 # 自定义函数添加属性
- print.count = 1 # Error 内置函数不可以添加属性
- # -- 函数注解: 编写在def头部行 主要用于说明参数范围、参数类型、返回值类型等
- def func(a: 'spam', b: (1, 10), c: float) -> int:
- print(a, b, c)
- func.__annotations__ # {'c':<class 'float'>, 'b':(1, 10), 'a':'spam', 'return':<class 'int'>}
- # 编写注解的同时 还是可以使用函数默认值 并且注解的位置位于=号的前边
- def func(a: 'spam' = 'a', b: (1, 10) = 2, c: float = 3) -> int:
- print(a, b, c)
- # -- 匿名函数:lambda
- f = lambda x, y, z: x + y + z # 普通匿名函数,使用方法f(1, 2, 3)
- f = lambda x=1, y=1: x + y # 带默认参数的lambda函数
- def action(x): # 嵌套lambda函数
- return (lambda y: x + y)
- f = lambda: a if xxx() else b # 无参数的lambda函数,使用方法f()
- # -- lambda函数与map filter reduce函数的结合
- list(map((lambda x: x + 1), [1, 2, 3])) # [2, 3, 4]
- list(filter((lambda x: x > 0), range(-4, 5))) # [1, 2, 3, 4]
- functools.reduce((lambda x, y: x + y), [1, 2, 3]) # 6
- functools.reduce((lambda x, y: x * y), [2, 3, 4]) # 24
- # -- 生成器函数:yield VS return
- def gensquare(N):
- for i in range(N):
- yield i ** 2 # 状态挂起 可以恢复到此时的状态
- for i in gensquare(5): # 使用方法
- print(i, end=' ') # [0, 1, 4, 9, 16]
- x = gensquare(2) # x是一个生成对象
- next(x) # 等同于x.__next__() 返回0
- next(x) # 等同于x.__next__() 返回1
- next(x) # 等同于x.__next__() 抛出异常StopIteration
- # -- 生成器表达式:小括号进行列表解析
- G = (x ** 2 for x in range(3)) # 使用小括号可以创建所需结果的生成器generator object
- next(G), next(G), next(G) # 和上述中的生成器函数的返回值一致
- # (1)生成器(生成器函数/生成器表达式)是单个迭代对象
- G = (x ** 2 for x in range(4))
- I1 = iter(G) # 这里实际上iter(G) = G
- next(I1) # 输出0
- next(G) # 输出1
- next(I1) # 输出4
- # (2)生成器不保留迭代后的结果
- gen = (i for i in range(4))
- 2 in gen # 返回True
- 3 in gen # 返回True
- 1 in gen # 返回False,其实检测2的时候,1已经就不在生成器中了,即1已经被迭代过了,同理2、3也不在了
- # -- 本地变量是静态检测的
- X = 22 # 全局变量X的声明和定义
- def test():
- print(X) # 如果没有下一语句 则该句合法 打印全局变量X
- X = 88 # 这一语句使得上一语句非法 因为它使得X变成了本地变量 上一句变成了打印一个未定义的本地变量(局部变量)
- if False: # 即使这样的语句 也会把print语句视为非法语句 因为:
- X = 88 # Python会无视if语句而仍然声明了局部变量X
- def test(): # 改进
- global X # 声明变量X为全局变量
- print(X) # 打印全局变量X
- X = 88 # 改变全局变量X
- # -- 函数的默认值是在函数定义的时候实例化的 而不是在调用的时候 例子:
- def foo(numbers=[]): # 这里的[]是可变的
- numbers.append(9)
- print(numbers)
- foo() # first time, like before, [9]
- foo() # second time, not like before, [9, 9]
- foo() # third time, not like before too, [9, 9, 9]
- # 改进:
- def foo(numbers=None):
- if numbers is None: numbers = []
- numbers.append(9)
- print(numbers)
- # 另外一个例子 参数的默认值为不可变的:
- def foo(count=0): # 这里的0是数字, 是不可变的
- count += 1
- print(count)
- foo() # 输出1
- foo() # 还是输出1
- foo(3) # 输出4
- foo() # 还是输出1
- """函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子"""
- """数学运算类"""
- abs(x) # 求绝对值,参数可以是整型,也可以是复数,若参数是复数,则返回复数的模
- complex([real[, imag]]) # 创建一个复数
- divmod(a, b) # 分别取商和余数,注意:整型、浮点型都可以
- float([x]) # 将一个字符串或数转换为浮点数。如果无参数将返回0.0
- int([x[, base]]) # 将一个字符串或浮点数转换为int类型,base表示进制
- long([x[, base]]) # 将一个字符串或浮点数转换为long类型
- pow(x, y) # 返回x的y次幂
- range([start], stop[, step]) # 产生一个序列,默认从0开始
- round(x[, n]) # 四舍五入
- sum(iterable[, start]) # 对集合求和
- oct(x) # 将一个数字转化为8进制字符串
- hex(x) # 将一个数字转换为16进制字符串
- chr(i) # 返回给定int类型对应的ASCII字符
- unichr(i) # 返回给定int类型的unicode
- ord(c) # 返回ASCII字符对应的整数
- bin(x) # 将整数x转换为二进制字符串
- bool([x]) # 将x转换为Boolean类型
- """集合类操作"""
- basestring() # str和unicode的超类,不能直接调用,可以用作isinstance判断
- format(value[, format_spec]) # 格式化输出字符串,格式化的参数顺序从0开始,如“I am {0},I like {1}”
- enumerate(sequence[, start=0]) # 返回一个可枚举的对象,注意它有第二个参数
- iter(obj[, sentinel]) # 生成一个对象的迭代器,第二个参数表示分隔符
- max(iterable[, args...][key]) # 返回集合中的最大值
- min(iterable[, args...][key]) # 返回集合中的最小值
- dict([arg]) # 创建数据字典
- list([iterable]) # 将一个集合类转换为另外一个集合类
- set() # set对象实例化
- frozenset([iterable]) # 产生一个不可变的set
- tuple([iterable]) # 生成一个tuple类型
- str([object]) # 转换为string类型
- sorted(iterable[, cmp[, key[, reverse]]]) # 集合排序
- L = [('b', 2), ('a', 1), ('c', 3), ('d', 4)]
- sorted(L, key=lambda x: x[1]), reverse = True) # 使用Key参数和reverse参数
- sorted(L, key=lambda x: (x[0], x[1])) # 使用key参数进行多条件排序,即如果x[0]相同,则比较x[1]
- """逻辑判断"""
- all(iterable) # 集合中的元素都为真的时候为真,特别的,若为空串返回为True
- any(iterable) # 集合中的元素有一个为真的时候为真,特别的,若为空串返回为False
- cmp(x, y) # 如果x < y ,返回负数;x == y, 返回0;x > y,返回正数
- """IO操作"""
- file(filename[, mode[, bufsize]]) # file类型的构造函数。
- input([prompt]) # 获取用户输入,推荐使用raw_input,因为该函数将不会捕获用户的错误输入,意思是自行判断类型
- # 在 Built-in Functions 里有一句话是这样写的:Consider using the raw_input() function for general input from users.
- raw_input([prompt]) # 设置输入,输入都是作为字符串处理
- open(name[, mode[, buffering]]) # 打开文件,与file有什么不同?推荐使用open
- """其他"""
- callable(object) # 检查对象object是否可调用
- classmethod(func) # 用来说明这个func是个类方法
- staticmethod(func) # 用来说明这个func为静态方法
- dir([object]) # 不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。
- help(obj) # 返回obj的帮助信息
- eval(expression) # 计算表达式expression的值,并返回
- exec(str) # 将str作为Python语句执行
- execfile(filename) # 用法类似exec(),不同的是execfile的参数filename为文件名,而exec的参数为字符串。
- filter(function, iterable) # 构造一个序列,等价于[item for item in iterable if function(item)],function返回值为True或False的函数
- list(filter(bool, range(-3, 4))) # 返回[-3, -2, -1, 1, 2, 3], 没有0
- hasattr(object, name) # 判断对象object是否包含名为name的特性
- getattr(object, name[, defalut]) # 获取一个类的属性
- setattr(object, name, value) # 设置属性值
- delattr(object, name) # 删除object对象名为name的属性
- globals() # 返回一个描述当前全局符号表的字典
- hash(object) # 如果对象object为哈希表类型,返回对象object的哈希值
- id(object) # 返回对象的唯一标识,一串数字
- isinstance(object, classinfo) # 判断object是否是class的实例
- isinstance(1, int) # 判断是不是int类型
- isinstance(1, (int, float)) # isinstance的第二个参数接受一个元组类型
- issubclass(
- class , classinfo) # 判断class是否为classinfo的子类
- locals() # 返回当前的变量列表
- map(function, iterable, ...) # 遍历每个元素,执行function操作
- list(map(abs, range(-3, 4))) # 返回[3, 2, 1, 0, 1, 2, 3]
- next(iterator[, default]) # 类似于iterator.next()
- property([fget[, fset[, fdel[, doc]]]]) # 属性访问的包装类,设置后可以通过c.x=value等来访问setter和getter
- reduce(function, iterable[, initializer]) # 合并操作,从第一个开始是前两个参数,然后是前两个的结果与第三个合并进行处理,以此类推
- def add(x, y): return x + y
- reduce(add, range(1, 11)) # 返回55 (注:1+2+3+4+5+6+7+8+9+10 = 55)
- reduce(add, range(1, 11), 20) # 返回75
- reload(module) # 重新加载模块
- repr(object) # 将一个对象变幻为可打印的格式
- slice(start, stop[, step]) # 产生分片对象
- type(object) # 返回该object的类型
- vars([object]) # 返回对象的变量名、变量值的字典
- a = Class(); # Class为一个空类
- a.name = 'qi', a.age = 9
- vars(a) # {'name':'qi', 'age':9}
- zip([iterable, ...]) # 返回对应数组
- list(zip([1, 2, 3], [4, 5, 6])) # [(1, 4), (2, 5), (3, 6)]
- a = [1, 2, 3], b = ["a", "b", "c"]
- z = zip(a, b) # 压缩:[(1, "a"), (2, "b"), (3, "c")]
- zip(*z) # 解压缩:[(1, 2, 3), ("a", "b", "c")]
- unicode(string, encoding, errors) # 将字符串string转化为unicode形式,string为encoded string。
- """模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle"""
- # -- Python模块搜索路径:
- """
- (1)程序的主目录 (2)PYTHONPATH目录 (3)标准链接库目录 (4)任何.pth文件的内容
- """
- # -- 查看全部的模块搜索路径
- import sys
- sys.path
- sys.argv # 获得脚本的参数
- sys.builtin_module_names # 查找内建模块
- sys.platform # 返回当前平台 出现如: "win32" "linux" "darwin"等
- sys.modules # 查找已导入的模块
- sys.modules.keys()
- sys.stdout # stdout 和 stderr 都是类文件对象,但是它们都是只写的。它们都没有 read 方法,只有 write 方法
- sys.stdout.write("hello")
- sys.stderr
- sys.stdin
- # -- 模块的使用代码
- import module1, module2 # 导入module1 使用module1.printer()
- from module1 import printer # 导入module1中的printer变量 使用printer()
- from module1 import * # 导入module1中的全部变量 使用不必添加module1前缀
- # -- 重载模块reload: 这是一个内置函数 而不是一条语句
- from imp import reload
- reload(module)
- # -- 模块的包导入:使用点号(.)而不是路径(dir1\dir2)进行导入
- import dir1.dir2.mod # d导入包(目录)dir1中的包dir2中的mod模块 此时dir1必须在Python可搜索路径中
- from dir1.dir2.mod import * # from语法的包导入
- # -- __init__.py包文件:每个导入的包中都应该包含这么一个文件
- """
- 该文件可以为空
- 首次进行包导入时 该文件会自动执行
- 高级功能:在该文件中使用__all__列表来定义包(目录)以from*的形式导入时 需要导入什么
- """
- # -- 包相对导入:使用点号(.) 只能使用from语句
- from . import spam # 导入当前目录下的spam模块(Python2: 当前目录下的模块, 直接导入即可)
- from .spam import name # 导入当前目录下的spam模块的name属性(Python2: 当前目录下的模块, 直接导入即可,不用加.)
- from .. import spam # 导入当前目录的父目录下的spam模块
- # -- 包相对导入与普通导入的区别
- from string import * # 这里导入的string模块为sys.path路径上的 而不是本目录下的string模块(如果存在也不是)
- from .string import * # 这里导入的string模块为本目录下的(不存在则导入失败) 而不是sys.path路径上的
- # -- 模块数据隐藏:最小化from*的破坏
- _X # 变量名前加下划线可以防止from*导入时该变量名被复制出去
- __all__ = ['x', 'x1', 'x2'] # 使用__all__列表指定from*时复制出去的变量名(变量名在列表中为字符串形式)
- # -- 可以使用__name__进行模块的单元测试:当模块为顶层执行文件时值为'__main__' 当模块被导入时为模块名
- if __name__ == '__main__':
- doSomething
- # 模块属性中还有其他属性,例如:
- __doc__ # 模块的说明文档
- __file__ # 模块文件的文件名,包括全路径
- __name__ # 主文件或者被导入文件
- __package__ # 模块所在的包
- # -- import语句from语句的as扩展
- import modulename as name
- from modulename import attrname as name
- # -- 得到模块属性的几种方法 假设为了得到name属性的值
- M.name
- M.__dict__['name']
- sys.modules['M'].name
- getattr(M, 'name')
- """类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象"""
- # -- 最普通的类
- class C1(C2, C3):
- spam = 42 # 数据属性
- def __init__(self, name): # 函数属性:构造函数
- self.name = name
- def __del__(self): # 函数属性:析构函数
- print("goodbey ", self.name)
- I1 = C1('bob')
- # -- Python的类没有基于参数的函数重载
- class FirstClass(object):
- def test(self, string):
- print(string)
- def test(self): # 此时类中只有一个test函数 即后者test(self) 它覆盖掉前者带参数的test函数
- print("hello world")
- # -- 子类扩展超类: 尽量调用超类的方法
- class Manager(Person):
- def giveRaise(self, percent, bonus=.10):
- self.pay = int(self.pay * (1 + percent + bonus)) # 不好的方式 复制粘贴超类代码
- Person.giveRaise(self, percent + bonus) # 好的方式 尽量调用超类方法
- # -- 类内省工具
- bob = Person('bob')
- bob.__class__ # <class 'Person'>
- bob.__class__.__name__ # 'Person'
- bob.__dict__ # {'pay':0, 'name':'bob', 'job':'Manager'}
- # -- 返回1中 数据属性spam是属于类 而不是对象
- I1 = C1('bob');
- I2 = C2('tom') # 此时I1和I2的spam都为42 但是都是返回的C1的spam属性
- C1.spam = 24 # 此时I1和I2的spam都为24
- I1.spam = 3 # 此时I1新增自有属性spam 值为3 I2和C1的spam还都为24
- # -- 类方法调用的两种方式
- instance.method(arg...)
- class .method(instance, arg...)
- # -- 抽象超类的实现方法
- # (1)某个函数中调用未定义的函数 子类中定义该函数
- def delegate(self):
- self.action() # 本类中不定义action函数 所以使用delegate函数时就会出错
- # (2)定义action函数 但是返回异常
- def action(self):
- raise NotImplementedError("action must be defined")
- # (3)上述的两种方法还都可以定义实例对象 实际上可以利用@装饰器语法生成不能定义的抽象超类
- from abc import ABCMeta, abstractmethod
- class Super(metaclass=ABCMeta):
- @abstractmethod
- def action(self): pass
- x = Super() # 返回 TypeError: Can't instantiate abstract class Super with abstract methods action
- # -- # OOP和继承: "is-a"的关系
- class A(B):
- pass
- a = A()
- isinstance(a, B) # 返回True, A是B的子类 a也是B的一种
- # OOP和组合: "has-a"的关系
- pass
- # OOP和委托: "包装"对象 在Python中委托通常是以"__getattr__"钩子方法实现的, 这个方法会拦截对不存在属性的读取
- # 包装类(或者称为代理类)可以使用__getattr__把任意读取转发给被包装的对象
- class wrapper(object):
- def __init__(self, object):
- self.wrapped = object
- def __getattr(self, attrname):
- print('Trace: ', attrname)
- return getattr(self.wrapped, attrname)
- # 注:这里使用getattr(X, N)内置函数以变量名字符串N从包装对象X中取出属性 类似于X.__dict__[N]
- x = wrapper([1, 2, 3])
- x.append(4) # 返回 "Trace: append" [1, 2, 3, 4]
- x = wrapper({'a': 1, 'b': 2})
- list(x.keys()) # 返回 "Trace: keys" ['a', 'b']
- # -- 类的伪私有属性:使用__attr
- class C1(object):
- def __init__(self, name):
- self.__name = name # 此时类的__name属性为伪私有属性 原理 它会自动变成self._C1__name = name
- def __str__(self):
- return 'self.name = %s' % self.__name
- I = C1('tom')
- print(I) # 返回 self.name = tom
- I.__name = 'jeey' # 这里无法访问 __name为伪私有属性
- I._C1__name = 'jeey' # 这里可以修改成功 self.name = jeey
- # -- 类方法是对象:无绑定类方法对象 / 绑定实例方法对象
- class Spam(object):
- def doit(self, message):
- print(message)
- def selfless(message)
- print(message)
- obj = Spam()
- x = obj.doit # 类的绑定方法对象 实例 + 函数
- x('hello world')
- x = Spam.doit # 类的无绑定方法对象 类名 + 函数
- x(obj, 'hello world')
- x = Spam.selfless # 类的无绑定方法函数 在3.0之前无效
- x('hello world')
- # -- 获取对象信息: 属性和方法
- a = MyObject()
- dir(a) # 使用dir函数
- hasattr(a, 'x') # 测试是否有x属性或方法 即a.x是否已经存在
- setattr(a, 'y', 19) # 设置属性或方法 等同于a.y = 19
- getattr(a, 'z', 0) # 获取属性或方法 如果属性不存在 则返回默认值0
- # 这里有个小技巧,setattr可以设置一个不能访问到的属性,即只能用getattr获取
- setattr(a, "can't touch", 100) # 这里的属性名带有空格,不能直接访问
- getattr(a, "can't touch", 0) # 但是可以用getattr获取
- # -- 为类动态绑定属性或方法: MethodType方法
- # 一般创建了一个class的实例后, 可以给该实例绑定任何属性和方法, 这就是动态语言的灵活性
- class Student(object):
- pass
- s = Student()
- s.name = 'Michael' # 动态给实例绑定一个属性
- def set_age(self, age): # 定义一个函数作为实例方法
- self.age = age
- from types import MethodType
- s.set_age = MethodType(set_age, s) # 给实例绑定一个方法 类的其他实例不受此影响
- s.set_age(25) # 调用实例方法
- Student.set_age = MethodType(set_age, Student) # 为类绑定一个方法 类的所有实例都拥有该方法
- """类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题"""
- # -- 多重继承: "混合类", 搜索方式"从下到上 从左到右 广度优先"
- class A(B, C):
- pass
- # -- 类的继承和子类的初始化
- # 1.子类定义了__init__方法时,若未显示调用基类__init__方法,python不会帮你调用。
- # 2.子类未定义__init__方法时,python会自动帮你调用首个基类的__init__方法,注意是首个。
- # 3.子类显示调用基类的初始化函数:
- class FooParent(object):
- def __init__(self, a):
- self.parent = 'I\'m the Parent.'
- print('Parent:a=' + str(a))
- def bar(self, message):
- print(message + ' from Parent')
- class FooChild(FooParent):
- def __init__(self, a):
- FooParent.__init__(self, a)
- print('Child:a=' + str(a))
- def bar(self, message):
- FooParent.bar(self, message)
- print(message + ' from Child')
- fooChild = FooChild(10)
- fooChild.bar('HelloWorld')
- # -- #实例方法 / 静态方法 / 类方法
- class Methods(object):
- def imeth(self, x): print(self, x) # 实例方法:传入的是实例和数据,操作的是实例的属性
- def smeth(x): print(x) # 静态方法:只传入数据 不传入实例,操作的是类的属性而不是实例的属性
- def cmeth(cls, x): print(cls, x) # 类方法:传入的是类对象和数据
- smeth = staticmethod(smeth) # 调用内置函数,也可以使用@staticmethod
- cmeth = classmethod(cmeth) # 调用内置函数,也可以使用@classmethod
- obj = Methods()
- obj.imeth(1) # 实例方法调用 <__main__.Methods object...> 1
- Methods.imeth(obj, 2) # <__main__.Methods object...> 2
- Methods.smeth(3) # 静态方法调用 3
- obj.smeth(4) # 这里可以使用实例进行调用
- Methods.cmeth(5) # 类方法调用 <class '__main__.Methods'> 5
- obj.cmeth(6) # <class '__main__.Methods'> 6
- # -- 函数装饰器:是它后边的函数的运行时的声明 由@符号以及后边紧跟的"元函数"(metafunction)组成
- @staticmethod
- def smeth(x): print(x)
- # 等同于:
- def smeth(x): print(x)
- smeth = staticmethod(smeth)
- # 同理
- @classmethod
- def cmeth(cls, x): print(x)
- # 等同于
- def cmeth(cls, x): print(x)
- cmeth = classmethod(cmeth)
- # -- 类修饰器:是它后边的类的运行时的声明 由@符号以及后边紧跟的"元函数"(metafunction)组成
- def decorator(aClass): .....
- @decorator
- class C(object): ....
- # 等同于:
- class C(object): ....
- C = decorator(C)
- # -- 限制class属性: __slots__属性
- class Student(object):
- __slots__ = ('name', 'age') # 限制Student及其实例只能拥有name和age属性
- # __slots__属性只对当前类起作用, 对其子类不起作用
- # __slots__属性能够节省内存
- # __slots__属性可以为列表list,或者元组tuple
- # -- 类属性高级话题: @property
- # 假设定义了一个类:C,该类必须继承自object类,有一私有变量_x
- class C(object):
- def __init__(self):
- self.__x = None
- # 第一种使用属性的方法
- def getx(self):
- return self.__x
- def setx(self, value):
- self.__x = value
- def delx(self):
- del self.__x
- x = property(getx, setx, delx, '')
- # property函数原型为property(fget=None,fset=None,fdel=None,doc=None)
- # 使用
- c = C()
- c.x = 100 # 自动调用setx方法
- y = c.x # 自动调用getx方法
- del c.x # 自动调用delx方法
- # 第二种方法使用属性的方法
- @property
- def x(self):
- return self.__x
- @x.setter
- def x(self, value):
- self.__x = value
- @x.deleter
- def x(self):
- del self.__x
- # 使用
- c = C()
- c.x = 100 # 自动调用setter方法
- y = c.x # 自动调用x方法
- del c.x # 自动调用deleter方法
- # -- 定制类: 重写类的方法
- # (1)__str__方法、__repr__方法: 定制类的输出字符串
- # (2)__iter__方法、next方法: 定制类的可迭代性
- class Fib(object):
- def __init__(self):
- self.a, self.b = 0, 1 # 初始化两个计数器a,b
- def __iter__(self):
- return self # 实例本身就是迭代对象,故返回自己
- def next(self):
- self.a, self.b = self.b, self.a + self.b
- if self.a > 100000: # 退出循环的条件
- raise StopIteration()
- return self.a # 返回下一个值
- for n in Fib():
- print(n) # 使用
- # (3)__getitem__方法、__setitem__方法: 定制类的下标操作[] 或者切片操作slice
- class Indexer(object):
- def __init__(self):
- self.data = {}
- def __getitem__(self, n): # 定义getitem方法
- print('getitem:', n)
- return self.data[n]
- def __setitem__(self, key, value): # 定义setitem方法
- print('setitem:key = {0}, value = {1}'.format(key, value))
- self.data[key] = value
- test = Indexer()
- test[0] = 1;
- test[3] = '3' # 调用setitem方法
- print(test[0]) # 调用getitem方法
- # (4)__getattr__方法: 定制类的属性操作
- class Student(object):
- def __getattr__(self, attr): # 定义当获取类的属性时的返回值
- if attr == 'age':
- return 25 # 当获取age属性时返回25
- raise AttributeError('object has no attribute: %s' % attr)
- # 注意: 只有当属性不存在时 才会调用该方法 且该方法默认返回None 需要在函数最后引发异常
- s = Student()
- s.age # s中age属性不存在 故调用__getattr__方法 返回25
- # (5)__call__方法: 定制类的'可调用'性
- class Student(object):
- def __call__(self): # 也可以带参数
- print('Calling......')
- s = Student()
- s() # s变成了可调用的 也可以带参数
- callable(s) # 测试s的可调用性 返回True
- # (6)__len__方法:求类的长度
- def __len__(self):
- return len(self.data)
- # -- 动态创建类type()
- # 一般创建类 需要在代码中提前定义
- class Hello(object):
- def hello(self, name='world'):
- print('Hello, %s.' % name)
- h = Hello()
- h.hello() # Hello, world
- type(Hello) # Hello是一个type类型 返回<class 'type'>
- type(h) # h是一个Hello类型 返回<class 'Hello'>
- # 动态类型语言中 类可以动态创建 type函数可用于创建新类型
- def fn(self, name='world'): # 先定义函数
- print('Hello, %s.' % name)
- Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello类 type原型: type(name, bases, dict)
- h = Hello() # 此时的h和上边的h一致
- """异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关"""
- # -- #捕获异常:
- try:
- except: # 捕获所有的异常 等同于except Exception:
- except name: # 捕获指定的异常
- except name, value: # 捕获指定的异常和额外的数据(实例)
- except (name1, name2):
- except (name1, name2), value:
- except name4 as X:
- else: # 如果没有发生异常
- finally: # 总会执行的部分
- # 引发异常: raise子句(raise IndexError)
- raise < instance > # raise instance of a class, raise IndexError()
- raise <
- class > # make and raise instance of a class, raise IndexError
- raise # reraise the most recent exception
- # -- Python3.x中的异常链: raise exception from otherException
- except Exception as X:
- raise IndexError('Bad') from X
- # -- assert子句: assert <test>, <data>
- assert x < 0, 'x must be negative'
- # -- with/as环境管理器:作为常见的try/finally用法模式的替代方案
- with expression[as variable], expression[as variable]:
- # 例子:
- with open('test.txt') as myfile:
- for line in myfile: print(line)
- # 等同于:
- myfile = open('test.txt')
- try:
- for line in myfile: print(line)
- finally:
- myfile.close()
- # -- 用户自定义异常: class Bad(Exception):.....
- """
- Exception超类 / except基类即可捕获到其所有子类
- Exception超类有默认的打印消息和状态 当然也可以定制打印显示:
- """
- class MyBad(Exception):
- def __str__(self):
- return '定制的打印消息'
- try:
- MyBad()
- except MyBad as x:
- print(x)
- # -- 用户定制异常数据
- class FormatError(Exception):
- def __init__(self, line, file):
- self.line = line
- self.file = file
- try:
- raise FormatError(42, 'test.py')
- except FormatError as X:
- print('Error at ', X.file, X.line)
- # 用户定制异常行为(方法):以记录日志为例
- class FormatError(Exception):
- logfile = 'formaterror.txt'
- def __init__(self, line, file):
- self.line = line
- self.file = file
- def logger(self):
- open(self.logfile, 'a').write('Error at ', self.file, self.line)
- try:
- raise FormatError(42, 'test.py')
- except FormatError as X:
- X.logger()
- # -- 关于sys.exc_info:允许一个异常处理器获取对最近引发的异常的访问
- try:
- ......
- except:
- # 此时sys.exc_info()返回一个元组(type, value, traceback)
- # type:正在处理的异常的异常类型
- # value:引发的异常的实例
- # traceback:堆栈信息
- # -- 异常层次
- BaseException
- +-- SystemExit
- +-- KeyboardInterrupt
- +-- GeneratorExit
- +-- Exception
- +-- StopIteration
- +-- ArithmeticError
- +-- AssertionError
- +-- AttributeError
- +-- BufferError
- +-- EOFError
- +-- ImportError
- +-- LookupError
- +-- MemoryError
- +-- NameError
- +-- OSError
- +-- ReferenceError
- +-- RuntimeError
- +-- SyntaxError
- +-- SystemError
- +-- TypeError
- +-- ValueError
- +-- Warning
- """Unicode和字节字符串---Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串"""
- # -- Python的字符串类型
- """Python2.x"""
- # 1.str表示8位文本和二进制数据
- # 2.unicode表示宽字符Unicode文本
- """Python3.x"""
- # 1.str表示Unicode文本(8位或者更宽)
- # 2.bytes表示不可变的二进制数据
- # 3.bytearray是一种可变的bytes类型
- # -- 字符编码方法
- """ASCII""" # 一个字节,只包含英文字符,0到127,共128个字符,利用函数可以进行字符和数字的相互转换
- ord('a') # 字符a的ASCII码为97,所以这里返回97
- chr(97) # 和上边的过程相反,返回字符'a'
- """Latin-1""" # 一个字节,包含特殊字符,0到255,共256个字符,相当于对ASCII码的扩展
- chr(196) # 返回一个特殊字符:Ä
- """Unicode""" # 宽字符,一个字符包含多个字节,一般用于亚洲的字符集,比如中文有好几万字
- """UTF-8""" # 可变字节数,小于128的字符表示为单个字节,128到0X7FF之间的代码转换为两个字节,0X7FF以上的代码转换为3或4个字节
- # 注意:可以看出来,ASCII码是Latin-1和UTF-8的一个子集
- # 注意:utf-8是unicode的一种实现方式,unicode、gbk、gb2312是编码字符集
- # -- 查看Python中的字符串编码名称,查看系统的编码
- import encodings
- help(encoding)
- import sys
- sys.platform # 'win64'
- sys.getdefaultencoding() # 'utf-8'
- sys.getdefaultencoding() # 返回当前系统平台的编码类型
- sys.getsizeof(object) # 返回object占有的bytes的大小
- # -- 源文件字符集编码声明: 添加注释来指定想要的编码形式 从而改变默认值 注释必须出现在脚本的第一行或者第二行
- """说明:其实这里只会检查#和coding:utf-8,其余的字符都是为了美观加上的"""
- # _*_ coding: utf-8 _*_
- # coding = utf-8
- # -- #编码: 字符串 --> 原始字节 #解码: 原始字节 --> 字符串
- # -- Python3.x中的字符串应用
- s = '...' # 构建一个str对象,不可变对象
- b = b'...' # 构建一个bytes对象,不可变对象
- s[0], b[0] # 返回('.', 113)
- s[1:], b[1:] # 返回('..', b'..')
- B = B"""
- xxxx
- yyyy
- """
- # B = b'\nxxxx\nyyyy\n'
- # 编码,将str字符串转化为其raw bytes形式:
- str.encode(encoding='utf-8', errors='strict')
- bytes(str, encoding)
- # 编码例子:
- S = 'egg'
- S.encode() # b'egg'
- bytes(S, encoding='ascii') # b'egg'
- # 解码,将raw bytes字符串转化为str形式:
- bytes.decode(encoding='utf-8', errors='strict')
- str(bytes_or_buffer[, encoding[, errors]])
- # 解码例子:
- B = b'spam'
- B.decode() # 'spam'
- str(B) # "b'spam'",不带编码的str调用,结果为打印该bytes对象
- str(B, encoding='ascii') # 'spam',带编码的str调用,结果为转化该bytes对象
- # -- Python2.x的编码问题
- u = u'汉'
- repr(u) # u'\xba\xba'
- s = u.encode('UTF-8')
- repr(s) # '\xc2\xba\xc2\xba'
- u2 = s.decode('UTF-8')
- repr(u2) # u'\xba\xba'
- # 对unicode进行解码是错误的
- s2 = u.decode(
- 'UTF-8') # UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)
- # 同样,对str进行编码也是错误的
- u2 = s.encode(
- 'UTF-8') # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc2 in position 0: ordinal not in range(128)
- # -- bytes对象
- B = b'abc'
- B = bytes('abc', 'ascii')
- B = bytes([97, 98, 99])
- B = 'abc'.encode()
- # bytes对象的方法调用基本和str类型一致 但:B[0]返回的是ASCII码值97, 而不是b'a'
- # -- #文本文件: 根据Unicode编码来解释文件内容,要么是平台的默认编码,要么是指定的编码类型
- # 二进制文件:表示字节值的整数的一个序列 open('bin.txt', 'rb')
- # -- Unicode文件
- s = 'A\xc4B\xe8C' # s = 'A?BèC' len(s) = 5
- # 手动编码
- l = s.encode('latin-1') # l = b'A\xc4B\xe8C' len(l) = 5
- u = s.encode('utf-8') # u = b'A\xc3\x84B\xc3\xa8C' len(u) = 7
- # 文件输出编码
- open('latindata', 'w', encoding='latin-1').write(s)
- l = open('latindata', 'rb').read() # l = b'A\xc4B\xe8C' len(l) = 5
- open('uft8data', 'w', encoding='utf-8').write(s)
- u = open('uft8data', 'rb').read() # u = b'A\xc3\x84B\xc3\xa8C' len(u) = 7
- # 文件输入编码
- s = open('latindata', 'r', encoding='latin-1').read() # s = 'A?BèC' len(s) = 5
- s = open('latindata', 'rb').read().decode('latin-1') # s = 'A?BèC' len(s) = 5
- s = open('utf8data', 'r', encoding='utf-8').read() # s = 'A?BèC' len(s) = 5
- s = open('utf8data', 'rb').read().decode('utf-8') # s = 'A?BèC' len(s) = 5
- """其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他"""
- # -- Python实现任意深度的赋值 例如a[0] = 'value1'; a[1][2] = 'value2'; a[3][4][5] = 'value3'
- class MyDict(dict):
- def __setitem__(self, key, value): # 该函数不做任何改动 这里只是为了输出
- print('setitem:', key, value, self)
- super().__setitem__(key, value)
- def __getitem__(self, item): # 主要技巧在该函数
- print('getitem:', item, self) # 输出信息
- # 基本思路: a[1][2]赋值时 需要先取出a[1] 然后给a[1]的[2]赋值
- if item not in self: # 如果a[1]不存在 则需要新建一个dict 并使得a[1] = dict
- temp = MyDict() # 新建的dict: temp
- super().__setitem__(item, temp) # 赋值a[1] = temp
- return temp # 返回temp 使得temp[2] = value有效
- return super().__getitem__(item) # 如果a[1]存在 则直接返回a[1]
- # 例子:
- test = MyDict()
- test[0] = 'test'
- print(test[0])
- test[1][2] = 'test1'
- print(test[1][2])
- test[1][3] = 'test2'
- print(test[1][3])
- # -- Python中的多维数组
- lists = [0] * 3 # 扩展list,结果为[0, 0, 0]
- lists = [[]] * 3 # 多维数组,结果为[[], [], []],但有问题,往下看
- lists[0].append(3) # 期望看到的结果[[3], [], []],实际结果[[3], [3], [3]],原因:list*n操作,是浅拷贝,如何避免?往下看
- lists = [[] for i in range(3)] # 多维数组,结果为[[], [], []]
- lists[0].append(3) # 结果为[[3], [], []]
- lists[1].append(6) # 结果为[[3], [6], []]
- lists[2].append(9) # 结果为[[3], [6], [9]]
- lists = [[[] for j in range(4)] for i in range(3)] # 3行4列,且每一个元素为[]